Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
3.
PLoS One ; 17(4): e0265820, 2022.
Article in English | MEDLINE | ID: covidwho-1855004

ABSTRACT

INTRODUCTION: The rapid expansion of the novel SARS-CoV-2 virus has raised serious public health concerns due to the possibility of misdiagnosis in regions where arboviral diseases are endemic. We performed the first study in northern Peru to describe the detection of SARS-CoV-2 IgM antibodies in febrile patients with a suspected diagnosis of dengue and chikungunya fever. MATERIALS AND METHODS: A consecutive cross-sectional study was performed in febrile patients attending primary healthcare centers from April 2020 through March 2021. Patients enrolled underwent serum sample collection for the molecular and serological detection of DENV and CHIKV. Also, serological detection of IgM antibodies against SARS-CoV-2 was performed. RESULTS: 464 patients were included during the study period, of which (40.51%) were positive for one pathogen, meanwhile (6.90%) presented co-infections between 2 or more pathogens. The majority of patients with monoinfections were positive for SARS-CoV-2 IgM with (73.40%), followed by DENV 18.09% and CHIKV (8.51%). The most frequent co-infection was DENV + SARS-CoV-2 with (65.63%), followed by DENV + CHIKV and DENV + CHIKV + SARS-CoV-2, both with (12.50%). The presence of polyarthralgias in hands (43.75%, p<0.01) and feet (31.25%, p = 0.05) were more frequently reported in patients with CHIKV monoinfection. Also, conjunctivitis was more common in patients positive for SARS-CoV-2 IgM (11.45%, p<0.01). The rest of the symptoms were similar among all the study groups. CONCLUSION: SARS-CoV-2 IgM antibodies were frequently detected in acute sera from febrile patients with a clinical suspicion of arboviral disease. The presence of polyarthralgias in hands and feet may be suggestive of CHIKV infection. These results reaffirm the need to consider SARS-CoV-2 infection as a main differential diagnosis of acute febrile illness in arboviruses endemic areas, as well as to consider co-infections between these pathogens.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Coinfection , Dengue Virus , Dengue , Zika Virus Infection , Antibodies, Viral , Arthralgia , COVID-19/diagnosis , COVID-19/epidemiology , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Coinfection/diagnosis , Coinfection/epidemiology , Cross-Sectional Studies , Dengue/diagnosis , Dengue/epidemiology , Fever/diagnosis , Humans , Immunoglobulin M , Peru/epidemiology , SARS-CoV-2 , Zika Virus Infection/epidemiology
4.
Clin Med (Lond) ; 22(1): 18-20, 2022 01.
Article in English | MEDLINE | ID: covidwho-1737354

ABSTRACT

A large majority of neurological infections remain undiagnosed worldwide. Emerging and re-emerging infections are likely to be responsible for a significant proportion of these. Over the last two decades, several new organisms producing neurological infection and the neurotropic potential of many other known pathogens have been identified. Large outbreaks caused by re-emerging pathogens such as Chikungunya virus, Zika virus and Ebola virus have led to better delineation of their neurological manifestations. Recognition of the pandemic potential of emerging pathogens and an improved understanding of their host-vector-environment interactions would help us be better prepared to meet these emerging threats.


Subject(s)
Chikungunya Fever , Chikungunya virus , Communicable Diseases, Emerging , Zika Virus Infection , Zika Virus , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks , Humans , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
5.
J Med Virol ; 94(1): 366-371, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544350

ABSTRACT

Co-epidemics happening simultaneously can generate a burden on healthcare systems. The co-occurrence of SARS-CoV-2 with vector-borne diseases (VBD), such as malaria and dengue in resource-limited settings represents an additional challenge to the healthcare systems. Herein, we assessed the coinfection rate between SARS-CoV-2 and VBD to highlight the need to carry out an accurate diagnosis and promote timely measures for these infections in Luanda, the capital city of Angola. This was a cross-sectional study conducted with 105 subjects tested for the SARS-CoV-2 and VBD with a rapid detection test in April 2021. The participants tested positive for SARS-CoV-2 (3.80%), malaria (13.3%), and dengue (27.6%). Low odds related to testing positivity to SARS-CoV-2 or VBD were observed in participants above or equal to 40 years (odds ratio [OR]: 0.60, p = 0.536), while higher odds were observed in male (OR: 1.44, p = 0.392) and urbanized areas (OR: 3.78, p = 0.223). The overall co-infection rate between SARS-CoV-2 and VBD was 11.4%. Our findings showed a coinfection between SARS-CoV-2 with malaria and dengue, which could indicate the need to integrate the screening for VBD in the SARS-CoV-2 testing algorithm and the adjustment of treatment protocols. Further studies are warranted to better elucidate the relationship between COVID-19 and VBD in Angola.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Dengue/epidemiology , Malaria/epidemiology , Vector Borne Diseases/epidemiology , Adolescent , Adult , Age Factors , Angola/epidemiology , Antibodies, Protozoan/blood , Antibodies, Viral/blood , COVID-19 Testing , Chikungunya Fever/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Mass Screening , Middle Aged , RNA, Viral/blood , SARS-CoV-2/isolation & purification , Sex Factors , Young Adult , Zika Virus Infection/epidemiology
6.
Gac Med Mex ; 157(2): 187-193, 2021.
Article in English | MEDLINE | ID: covidwho-1317391

ABSTRACT

In American countries, simultaneously with the coronavirus disease 2019 (COVID-19) pandemic, epidemics caused by different arboviruses (dengue, chikungunya and Zika viruses) are occurring. In Mexico, several of the strategies to control the Aedes aegypti mosquito, which transmits arboviruses, involve the interaction of health personnel with the community. Due to the COVID-19 pandemic, social distancing and home confinement measures have been implemented. To obey these measures and avoid the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, the National Center for Preventive Programs and Disease Control (CENAPRECE) has presented the vector control strategy in the scenario of simultaneous dengue and COVID-19 transmission in Mexico. In this work, we mention the routine comprehensive mosquito control measures and describe the adaptations that have been made. Furthermore, we discuss the relevance of medical personnel training and supervision, especially focusing on the similarity of symptoms between both pathologies.


En países americanos, simultáneas a la pandemia de enfermedad por coronavirus 2019 (COVID-19) se están dando epidemias ocasionadas por diferentes arbovirus (del dengue, chikunguña y virus del Zika). En México, varias de las estrategias para control del mosquito Aedes aegypti, transmisor de arbovirus, involucran la interacción del personal salubrista y los moradores. Debido a la pandemia de COVID-19 se han implementado medidas de distanciamiento social y resguardo domiciliario. Para respetar estas medidas y evitar riesgo de contagio por coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2), el Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE) ha presentado la estrategia de control de vectores en el escenario de transmisión simultánea por dengue y COVID-19 en México. En este trabajo mencionamos las medidas habituales de manejo integral de mosquito y mencionamos las adaptaciones realizadas. De igual forma, discutimos la relevancia de la capacitación y la supervisión al personal médico, esto debido a la similitud entre la sintomatología entre ambas patologías.


Subject(s)
Aedes/virology , Arbovirus Infections/epidemiology , COVID-19/epidemiology , Epidemiological Monitoring , Mosquito Control/methods , Pandemics , Animals , Arbovirus Infections/prevention & control , COVID-19/prevention & control , Chikungunya Fever/epidemiology , Chikungunya Fever/prevention & control , Dengue/epidemiology , Dengue/prevention & control , Health Promotion , Humans , Information Dissemination , Physical Distancing , Zika Virus Infection/epidemiology
8.
PLoS Negl Trop Dis ; 15(3): e0009259, 2021 03.
Article in English | MEDLINE | ID: covidwho-1127761

ABSTRACT

Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.


Subject(s)
Chikungunya Fever/epidemiology , Dengue/epidemiology , Zika Virus Infection/epidemiology , Aedes/physiology , Aedes/virology , Animals , Chikungunya Fever/economics , Chikungunya Fever/virology , Chikungunya virus/physiology , Climate , Colombia/epidemiology , Dengue/economics , Dengue/virology , Dengue Virus/physiology , Economic Factors , Ecosystem , Humans , Mosquito Vectors/physiology , Mosquito Vectors/virology , South America , Temperature , Zika Virus/physiology , Zika Virus Infection/economics , Zika Virus Infection/virology
9.
PLoS One ; 16(1): e0244937, 2021.
Article in English | MEDLINE | ID: covidwho-1013221

ABSTRACT

BACKGROUND: The impact of SARS-CoV-2 in regions endemic for both Dengue and Chikungunya is still not fully understood. Considering that symptoms/clinical features displayed during Dengue, Chikungunya and SARS-CoV-2 acute infections are similar, undiagnosed cases of SARS-CoV-2 in co-endemic areas may be more prevalent than expected. This study was conducted to assess the prevalence of covert cases of SARS-CoV-2 among samples from patients with clinical symptoms compatible with either Dengue or Chikungunya viral infection in the state of Espírito Santo, Brazil. METHODS: Presence of immunoglobulin G (IgG) antibody specific to SARS-CoV-2 nucleoprotein was detected using a chemiluminescent microparticle immunoassay in samples from 7,370 patients, without previous history of COVID-19 diagnosis, suspected of having either Dengue (n = 1,700) or Chikungunya (n = 7,349) from December 1st, 2019 to June 30th, 2020. FINDINGS: Covert cases of SARS-CoV-2 were detected in 210 (2.85%) out of the 7,370 serum samples tested. The earliest undiagnosed missed case of COVID-19 dated back to a sample collected on December 18, 2019, also positive for Dengue Virus. Cross-reactivity with either Dengue virus or other common coronaviruses were not observed. INTERPRETATION: Our findings demonstrate that concomitant Dengue or Chikungunya outbreaks may difficult the diagnosis of SARS-CoV-2 infections. To our knowledge, this is the first study to demonstrate, with a robust sample size (n = 7,370) and using highly specific and sensitive chemiluminescent microparticle immunoassay method, that covert SARS-CoV-2 infections are more frequent than previously expected in Dengue and Chikungunya hyperendemic regions. Moreover, our results suggest that SAR-CoV-2 cases were occurring prior to February, 2020, and that these undiagnosed missed cases may have contributed to the fast expansion of SARS-CoV-2 outbreak in Brazil. Data presented here demonstrate that in arboviral endemic regions, SARS-CoV-2 infection must be always considered, regardless of the existence of a previous positive diagnosis for Dengue or Chikungunya.


Subject(s)
COVID-19/epidemiology , Chikungunya Fever/epidemiology , Dengue/epidemiology , Adult , Antibodies, Viral/blood , Brazil/epidemiology , COVID-19/complications , Chikungunya virus/pathogenicity , Coinfection/epidemiology , Dengue Virus/pathogenicity , Diagnostic Errors/trends , Disease Outbreaks , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Prevalence , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL